

LOFAR Tied-array Imaging of Type III Solar Radio Bursts

Diana E. Morosan Pietro Zucca, Richard Fallows, Peter T. Gallagher

Trinity College Dublin, Ireland Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo

Tied-Array Beams Observations of the Sun Using LBAs from the Full LOFAR Core 127 Tied Array Beams covering a FOV of 3.3°

Tied-Array Beams Observations of the Sun Using LBAs from the Full LOFAR Core

Multiple Type III Radio Bursts - fast frequency drift bursts occurring in groups or storms

Dynamic Spectra Extracted from Tied-Array Beams using Low Band Antennas

Multiple Type III Radio Bursts - fast frequency drift bursts occurring in groups or storms

Dynamic Spectra Extracted from Tied-Array Beams using Low Band Antennas

Multiple Type III Radio Bursts - fast frequency drift bursts occurring in groups or storms

LOFAR - 30 Minute Data Set

Sequence of images in time

Example of data points plotted as a sequence of images in time at 40-45 MHz:

• • •

Type III Emission frequency decreases with increasing distance from the Sun: $f_p = 9000\sqrt{n_e}Hz$

Conclusions and Future Observations

- First time LOFAR tied-array beams were used on the Sun to provide spatial information of radio bursts.
- Identifications of Type IIIs between 1-4 R_{\odot} .
- Discrepancy between observations and theory.
- Type III radio bursts related to the passage of a CME for the first time.